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Asymptotic Geometry of Hyperbolic 
Well-Ordered Cantor Sets 

F. M. Tangerman ~'3 and J. J. P. Veerman 2'3 

Received August 28, 1989 

In this paper we study the well-ordered Cantor  sets in hyperbolic sets on the 
line and the plane. Examples of such sets occur in circle maps  and in area- 
preserving twist maps. We set up a renormalization scheme employing in both 
cases the first return map. We prove convergence of this scheme. The con- 
vergence implies that the asymptotic geometry of such a well-ordered set with 
irrational rotation number  and their nearby well-ordered orbits is determined 
by the Lyapunov exponent of this set. 

KEY W O R D S :  Renormalization, hyperbolic Cantor  sets, Lyapunov expo- 
nents, bounded nonlinearity, Denjoy-Koksma,  Aubry-Mather  sets, asymptotic 
geometry. 

0. INTRODUCTION 

In this paper we study analytic aspects of well-ordered Cantor sets in one- 
and two-dimensional hyperbolic sets. The general problem is the following. 
Such well-ordered Cantor sets have a well-defined rotation number. Each 
such well-ordered Cantor set can be approximated by well-ordered periodic 
orbits. If one chooses the rotation number of these periodic orbits to 
approximate the rotation number of the given Cantor set very well, one 
then expects that the corresponding periodic set approximates the Cantor 
set very well. Moreover, in the hyperbolic setting this convergence should 
be controlled by the positive Lyapunov exponent 2(E) of the Cantor set 
E. (~5) In this paper we study a class of such hyperbolic sets, arising from 
maps for which well-orderedness can be defined. Now fix an irrational 
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minimal well-ordered Cantor set in this hyperbolic set. We set up a 
renormalization scheme defined by the symbolic dynamics at special points 
in the Cantor set. The sequence of renormalized maps is constructed by 
considering first return maps, as it is done for one-dimensional maps. 
It turns out this sequence depends essentially only on the Lyapunov 
exponents of the well-ordered set. We show that the sequence of renor- 
malizations converges at a superexponential rate to the sequence of renor- 
malizations of a linear map (Theorems 2.8 and 3.8). For  the definition of 
convergence of renormalizations see the Appendix. Here we assume that 
the maps under consideration are of class C 2. In the one-dimensional case 
C 1 + ~ suffices. (We say that the asymptotic geometry of the original Cantor 
set is linear.) As a corollary of this method one obtains: 

Theorem 2.4. (One-dimensional.) Let E~ be a well-ordered minimal 
Cantor set for a smooth (C 1+~) one-dimensional expanding map of 
rotation number e. Let p/q be a rational approximant of c~. Let Ep/q be the 
approximating well-ordered periodic orbit of rotation number p/q. Then 

dH(E /q, E )e 

is uniformly in q bounded away from zero and infinity. 

Here dH denotes the Hausdorff distance on sets. 
This paper was written as a sequel ro ref. 15. In that paper we study 

hyperbolic Aubry-Mather  sets for area-preserving monotone twist maps. 
We show there how, under certain geometric assumptions, one can define 
a renormalization scheme for such hyperbolic Aubry-Mather  sets. Using 
the results of ref. 16, we can prove that these assumptions are satisfied for 
the standard map with large nonlinearity parameter. The results of the 
present paper imply convergence of this renormalization scheme. 

In the area-preserving case the stable and unstable Lyapunov 
exponents ;t s and 2 u of a minimal hyperbolic set are the same in absolute 
value. One then obtains the analogous statement to Theorem2.4 
concerning the speed of convergence of certain well-ordered periodic orbits 
to Aubry-Mather  sets of irrational rotation number. More precisely: 

Corollary. Let E~ be a hyperbolic Aubry-Mather  set of rotation 
number e for the standard map (with large nonlinearity parameter). Let 
p/q be a rational approximant of e. Let Ep/q be the approximating well- 
ordered periodic Aubry Mather set of rotation number p/q. Then 

dH(Ep/q, E~) e q~"(~)/2 

is uniformly in q bounded away from zero and infinity. 
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The setup of this paper is as follows. In Section 1 we recall the con- 
struction of the symbolic dynamics for such well-ordered Cantor sets. In 
Section 2 we study the analysis in the one-dimensional setting. In Section 3 
we study the two-dimensional case. 

1. S Y M B O L I C  D Y N A M I C S  OF E X P A N D I N G  W E L L - O R D E R E D  
SETS 

In this section we review for future purposes the symbolic dynamics of 
well-ordered Cantor sets. We introduce at the end of this section the 
topological format of a renormalization scheme. 

Consider disjoint intervals I o, I1 c I c R  and expanding, orientation- 
preserving homeomorphisms 

fi: I,--'fi(4) =I, i=0 ,  1 

Define f :  Io w I1 ~ I as ft~, = f i .  We assume that f0 fixes the left endpoint 
of Io, and f l  fixes the right endpoint of I1. Assume that f is C 1 and 
IIf'll>7>l. Then, as is well known, the nonwandering set A(f) is a 
Cantor set. 

Definition. An f-invariant set E in A(f) is well ordered if fie 
extends as a monotone circle map to I with the endpoints identified. 

Each well-ordered set then has a well-defined rotation number in R/Z. 
The following proposition has been discovered by many people. (4'1~ 13) 

Proposition 1.1. If f preserves orientation, then for all ~ # 0  in 
R/Z, f has a unique well-ordered minimal set E= in A(f) of rotation 
number ~. 

Such minimal sets are constructed as follows: Denote by 

h: _r= {0, 1}N--,A(f)  

the standard conjugacy between the shift map ~ on ~" and f on A(f):  

h(s0, Sl,..., s ..... )=  ~ fso 1 . . . . .  fsl(I) 
J=0 

Here f ~ l  denote the two right inverses of f. 

Remark. Provided the context is clear, we name a subset in A(f) by 
the corresponding set of sequences in 27. 

Provide Z" with the dictionary topology (0 < 1). Provided that 11 is to 
the right of I0, h is order preserving, since f is orientation preserving. 



302 Tangerman and Veerman 

For  a real number  x define I(x)  to be its integer value = max{n  ] n ~< x}. 
Fix ~ ~ 0. Fo r  0 ~< d ~< 1, consider the line with equat ion  y = ex + d. To  

each such d we will associate a sequence of zeros and ones, which we 
denote  by s j d ) .  The i th symbol  of this sequence is defined as follows: 

s~(d)i = I(~(i + 1 ) + d) - I(~i + d) 

In other  words,  zero or one, depending on whether  the integer value 
changes (see Fig. 1), So we have a m a p  s~: [0, 1 ] / o -  1 ~ Z'. Define s~, < by 
the ana logous  receipe where one changes the definition of integer value to 
max  {n [ n < x }. Fo r  sake of completeness  we summar ize  the main  observat ions:  

1. (Monotonic i ty . )  Fo r  c~ fixed, s~ is m o n o t o n e  in d. Fo r  d fixed, s,(d)  
is m o n o t o n e  in c~. 

2. s~ o R~ = ~ o s~ ( translate unity to the left). Here  R~(d)= d+ ~. One 
has the ana logous  conjugacy for s~, <. 

3. The set of d for which the line y = ex + d contains a lattice point  
in Z + x Z + makes  up precisely the points  of discontinuity and s~ is right 
continuous,  s~, < is left continuous.  

4. Deno te  by E~ the closure of the image of s~; E~ is a minimal  set 
for a. 

5. The  ro ta t ion  n u m b e r  ~ of E~ is the average n u m b e r  of ones in a 
string for a point  in E~. 

i . . . . . .  i .  - - �9 - - , ;  - , ;  - . i - -  ~ . . . . . . . .  ,~ . �9 

(0,0) (1,o) 

s~(B) - 01118111, ,. 

so< (d  ) - II101118, , ,  

Fig. 1. The definition of s~(d). 
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6. Define the endpoints of E~ to be those points which are not both 
right and left accumulation points. Since E~ is ordered, it makes sense to 
speak of gaps. For d a point of discontinuity, one has that s~(d) denotes the 
left endpoint of the gap. 

7. For c~ rational, E~ is a periodic orbit. 

Fix ~ irrational, c~ = [ao,..., an,...]. We introduce the following notation. 
The sequence of continued fraction approximants to c~ is denoted by 
{ Pn/q~ }- One has 

pn+2=a~+2P~+l+Pn, q,,+2=an+2qn+l+qn 
The following proposition describes how well the orbit sp~ 

approximates s~(0). 

Proposition 1.2. Let n be even, p~/q,, < c~; then 

inf{ilsp~,q~(O)i ~ s~(0)i} = qn +2 I> 2q~ 

Proof. This follows directly from the property of continued fractions 
as described, for example, in ref. 1. This can be proven as follows. We are 
considering two lines through the origin, one with slope c~, the other with 
slope p,/q,. For continued fractions one has the following estimate on the 
denominators: 

qn+z>~qn+~ +qn>/2q~ 

Since (q~+2, P,+2) is the first closest lattice point below the line slope c~ to 
the right of (q~, Pn), the proposition follows. | 

We want to describe the Cantor set E~ as an intersection of nested 
collections Iq, of intervals in X. We have E~ = 0 ,  Iq.. Here each lq is a 
collection of intervals in Z', determined by certain symbol sequences of 
length q, constructed as follows. 

De f in i t i on .  IK= {s~Zlf i rs t  K digits of s equal first K digits of 
s~(d) for some d}. 

Consider the point sp./q.(O). From the previous proposition it follows 
that this approximates the point s~(0) very well. The extent to which its 
orbit approximates E~ is the content of the following lemma. 

Lemma 1.3. 

1. Every interval in Iq_~ contains a single point in the orbit of 
%/q~ 

2. All but one of the intervals in Iqo contain a point in the orbit of 
s~./q~ 

Proof. See the Appendix in ref. 15. | 

822/'59/1-2-20 
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For later reference we want to understand how t o  construct the 
symbol sequence of Sp,/q,. Denote by 7", the segment of period qn in its 
sequence. 

Proposi t ion  1.4. We have 

for n even 

for n odd 

an~2 Tn+2= T.T ,+I  

Tn+ 2 = Tan+2 T ~ n +  1 n 

Proof. We will prove the first case. Consider the triangle with ver- 
tices (0, 0), (q,, Pn), and (q,+2, P,+2). This triangle contains no lattice 
point in its interior. The result then follows from the definition of s~(0). ] 

Remark. These points are placed as follows: 

O2n O2n+2 �9 e2n+3 O2n+1 

We have denoted points by their subscripts. 
We finish this section with a combinatorial version of renormalization 

in our setting. We will describe the construction of closest return maps on 
intervals bounded by periodic points. Pick two rational numbers 0 < p/q < 
r/s < 1. Consider the periodic points Po, respectively P1, corresponding to 
Sp/q(O) and sr/~(O). Their orbits are, by definition, well ordered. Consider the 
interval J in I bounded by these two periodic points. Define Jo, respec- 
tively J1, to be the intervals f-qJ ~ J ,  respectively f - s j  ~ j .  Now we can 
define new maps on J0 w J1 to J as fq  on  J0  and f~ in J1. Denote this map 
by R(f, J), the renormalization o f f  to the interval J, and rescale J affinely 
to the unit interval. This renormalized map satisfies the same assumptions 
as our original map f The map R(f, J)  is the (rescaled) first return map for 
those points in J which return in q or s iterates. For R(f, J)  we can define 
well-ordered sets, symbolic dynamics, etc. 

Proposition 1.5. Assume det Ip q ~l = 1. Every minimal well-ordered 
set of R(f, J)  is in J contained in a minimal well-ordered set for f 

Proof. Let Aa be a well-ordered set for R(f, J)  in J of rotation 
number ~ with respect to J. By iterating this set under f finitely many 
times, one obtains a minimal f-invariant set E. 

We have to show that it is well ordered. The collection of symbolic 
sequences for E can be obtained as follows. Let _s.be a string for a point in 
Aa. Associate to s a new string s* by substituting for each 0 in s the finite 
string for Po, for each 1 the finite string for PI. This defines a map * from 
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the symbolic sequences of A s into X. In terms of rotation numbers, the 
action of the map * is described by the following linear map A : 

A I ~ ] ~ [ P  ] and A [ ~ 1 ~ [ ;  ] 

By assumption, this linear transformation has determinant one. 
Denote A [fill ] by fl'. Then A maps the line y = fix to the line y = fl'x. 

Since A preserves orientation, lattice points above (below) the line y = fix 
are mapped to lattice points above (below) y = fl'x~ Since this unimodular 
transformation A moreover maps the Farey tree into a subtree of itself, 
continued fraction approximants to fl are mapped to continued fraction 
approximants to fl'. Therefore sB(0)* =s~,(0). Since the set of symbolic 
sequences for E equals the closure of the union of all shifts of s~(0)*, we 
obtain that E = E~,. | 

This proposition implies that one can analyze well-ordered sets 
for f, using this renormalization construction, if one chooses approxi- 
mating rationals suitably. For example, consecutive continued fraction 
approximants or consecutive Farey approximants satisfy the assumption of 
the proposition. In the next section we discuss analytic properties of these 
renormalizations. 

2. ANALYSIS ON EXPANDING WELL-ORDERED SETS 
ON THE LINE 

We assume that we are in the setting of the previous section: we are 
given two intervals Ii, i=0 ,  1, on the real line and an orientation- 
preserving expanding map f defined on each of these intervals so that the 
image of each of these intervals contains both. 

Remark. Let f and g be two such expanding maps. f and g are 
topologically conjugate on their nonwandering sets. We fix the topological 
conjugacy h by requiring it to be order preserving. Since f and g are both 
C 1, they have derivatives bounded away from 1 and oe; it follows that h is 
already H61der continuous. As a matter of fact, the modulus of continuity 
of h is at least 

~'min l n f ;  rain l n f ] ;  
min [max In g; '  max In g'i J 

Here the subscripts denote the restriction of the map to their intervals Io 
and I1. 
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From now on denote by  E~ the unique well-ordered minimal set of 
rotation number ~ in A(f), the nonwandering set of f. Now let r be a 
Borel-measurable function on A(f). Consider the function 

I ( r  ): 81 --~ R k.J { oo }, I(r ~) : f r  

Here #~ denotes the unique f-invariant probability measure on E~. This 
measure can be characterized as follows: Let 0: E~ ~ S 1 be a semicon- 
jugacy beween f on E~ and R~ on S 1. Then O,g~ is Lebesgue measure. The 
collection of measures {#~} is weak *-continuous at irrationals. Therefore 
the function I(r  is already continuous at irrationals for r moderately 
regular. In the well-ordered case an important principle to obtain under- 
standing of the behavior of the function I ( r  is the Denjoy-Koksma 
theorem (see, for example, ref. 5). In the case where one has the additional 
information that the system is expanding, much stronger tools are 
available, for example, Renyi's discovery concerning bounded nonlinearity 
of compositions of C 1 +~ expanding maps with small image, (8) which we 
will use over and over again. 

Denote by C~A(f) the Banach space of functions r on A(f), which 
are HSlder continuous of exponent/~; denote by 

I~o(x) - q~(y)l 
ICJ~= sup x,y~A(f) Ix-yl  ~ 

the norm of r From now on the standing assumption is that f is C 1 and 
that inff '>~ ? > 1. The first proposition is concerned with how well finite 
time average converge to the actual average. 

P r o p o s i t i o n  2.1. (Hyperbolic Denjoy-Koksma.)  Let ~ be irra- 
tional, p/q a rational approximant of c~. Assume r is in CBA(f), Let Xo be 
a point in Eo; then 

i~=i (J(fi(Xo))--q f r "~" ?qfl Ir 

In particular, the time average converges, not just p~ almost everywhere. 

ProoL By Lemma 1.3, we have that E~ is contained in Iq_l, which 
consists of q intervals {Iq_ 1 } and each of such intervals consists of points 
whose first itinerary of length q is the same. Consequently each of these 
intervals has length smaller than 7 -q 

Now pick any point Xo in E~. Its first q iterates (x,..., fq I(X)) land in 
each of these intervals. So #~(I~_ ,) = 1/q. 
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Consider again these first q - 1  iterates. After relabeling we have 
f (Xo)  ~ Iq_ 1. Then 

- <<" [~(fi(x~ - q J"~-i 

q-  1 ]s ~<,=~o q fI'+, {+(f/(XO))--+ 

Because we have the estimate for the length of I~_ 1, the estimate follows. 
That this implies that the time average converges can be seen as 

follows. Let ~=[ao,  al,...,ar...], and N<qn.  Then N = Z j < n b j q  J with 
bj ~< a i -Now we have 

,~-o bxqs 
Now the right-hand side converges to zero. | 

We now immediately have the following. 

Proposi t ion 2.2. Let a be irrational, and p/q a rational approxi- 
mant of a. Then for ~b in C n we have 

2 
]I(~, p/q)-I((~,  7)1 ~<~-~ J~bln 

Proof. Assume p/q<~; the other case is treated analogously. For 
any point Q in Ep/q on has 

0 

We take Q in Ep/q t o  be Sp/q(O) and x0 = s~(0) in E~. From the symbolic 
dynamics one then obtains that the first q iterates of Q are very close to the 
first q iterates of Xo; more precisely (see Proposition 1.2) 

1 
for i =  1, . . . ,q-  1: t f i ( xo ) - f i (Q)[  ~<-  

7 q 

Consequently 

~o (~(f i(xo))-  q~(f'(Q)) --~ f(~l 

Now apply the previous proposition. I 
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An important application for our purpose concerns Lyapunov 
exponents. More precisely, assume that f e C A + 8; let ~b = In f ' .  Then I(~b, ~) 
equals the Lyapunov exponent of f on E~, which we will denote by 2(c0. 
We remark that in this case, we can apply Proposition 2.1 and obtain that 
2(~) equals the Lyapunov exponent of every point in E~. 

Corollary 2.3. 
approximant to 

Assume that f is of class C 1 § For p/q a rational 

12(p/q) - 2(~)t ~< If'l#/7 q8 

Now denote by dr~ the Hausdorff distance on compact sets. 

Theorem 2.4. Assume f ~ C  1+8. Let p/q be a continued fraction 
approximant of c<; then dH(Ep/q, E~)e q)'(~) is uniformly bounded away from 
zero and infinity. 

Proof. We have from Lemma 1.3 that E~ c Iq 1. Recall that lq_ 1 
consists of q intervals each containing one point in the orbit of Q = Sp/q(O). 
Denote by III the length of an interval L 

i I eq2(P/q) We first show that IIq ~ is (for p/q a rational approximant) 
bounded away from zero and infinity, uniformly in q. This can be seen as 

i follows. Since fq-~  is injective on Iq_l and f ~  C 1+8, we have that for all 
points x, y in Iq_ 1 

I ln [ f  (q- 1)'(x)] - In f (q -  1)'(y)l 

q - 2  
<~ ~ Iln f ' ( f ~ ( x ) ) - l n  f'(fi(Y))[ 

i = 0  

~< lln f'18 ~ I f i ( x ) - f i ( y ) 1 8  
i 

q - - 2  

~< llnf 'J8 ]fq l ( x ) - f q - l (Y ) [  8 E 7 -8i 

The last inequality holds because I f  q l ( x ) - fq -~ (y ) l  is no biger than 1. 
�9 i Let y = f ( Q ) .  This point is periodic and fq ' ( y )=  e q'~(p/q) For x in Iq_ 1 

the ratio fq'(x)/e qr is then uniformly (in q) bounded away from zero 
and infinity, Since fq-1(/ '~_ 1) has length of order 1 (independent of q), we 
obtain that [Iq_ 11 eq2(P/q) is uniformly bounded away from zero and infinity. 
Therefore (by Lemm'a 1.3) dH(Ep/q, Ea) i sbounded  from above by e -q2(p/q). 
According to the previous corollary, eq~(P/q)/e q2(ct) is uniformly bounded. 
Consequently, dH(Ep/q, E~,)e q).(~) is uniformly bounded away from infinity. 
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By Lemma 1.3, one interval in Iq does not contain a point in the orbit 
of Q. The length of this interval is O(e-q;t(~)). Therefore, dH(Ep/q, E~)e q~(~) 
is also uniformly bounded away from zero. | 

Remarks. 1. If one considers Farey approximants instead of 
continued fraction approximants, the convergence is typically not this good 
(this of course only applies to irrationals of unbounded type). 

2. The present discussion generalizes straightforwardly to the case of 
a finite number of intervals. 

3. As a further application of the analytic theory, consider smoothy 
circle endomorphisms with critical points. There are many examples (z) 
where one can construct well-ordered minimal sets for such maps. Assume 
that such a set avoids a neighborhood of the critical set. By ref. 9, such sets 
are hyperbolic, and by ref. 14, these sets imbed as well-ordered minimal sets 
for smooth expanding circle maps. Consequently, the previous applies. 

In the present context we want to describe analytic properties of the 
renormalization scheme outlined in Section 1. More specificaly, this scheme 
concentrates on points which are endpoints of gaps. So let us consider the 
point Q~ = defG(0) in E~. Consider the sequence of continued fraction 
approximants Prig to c~. Consider for n the point Qn = Sp~/q,(O). One has 
that Qzn is to  the left of Q~ and Qzn+l is to the right of Q~. Now consider 
the interval Jn bounded by Qz, and Qzn+l. Define J.,o as the interval 
f qz, j , .  Now, R(f, R.), the renormalization of f to J . ,  satisfies the same 
assumptions as our original f In particular, R(f, J . )  has again well- 
ordered minimal sets of a given rotation number. Every such minimal set 
defines by repeated application of the original map f a minimal set for f 
on the original interval. One observes that this induced minimal set is 
agai~ well ordered (Proposition 1.5). As far as the rotation number is 
concerned, we have the following. (~5) 

P r o p o s i t i o n  2 .5 .  If E is a well-ordered set and has rotation 
number e for R(f, J.) ,  then the induced well-ordered set for f has rotation 
number 

~Pz~ + l + (1 - ~)Pz~ 
O~qzn+ t -4- (1 - ~)qzn 

Proof. This follows immediately from the characterization of the 
rotation number as the average number of ones. | 

Now define the nonlinearity of a map f as 

f ' (x )  1 
N( f )  = sxu p f ' (Y)  
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(see also ref. 11). From the proof of Theorem 2.4 we have that the sequence 
of maps R(f,  J . )  has uniformly bounded nonlinearity (on each of the 
intervals on which it is defined). 

We have the following stronger result. 

P r o p o s i t i o n  2.6. Let ~ be irrational, and {p, /q,}  be the sequence 
of continued fractions to c~. The renormalizations {R(f, J . )}  converge 
exponentially fast in n to the set of linear expanding maps on J .  with 
s lopes  e qzn)'(~) and eq2"+L),(~). 

ProoL We how first that the nonlinearity of the expanding maps 
R(f, J . )  tends to zero as n tends to infinity. Consider two points x and y 
in, say, J.,o (the other case being analogous). Then with q = qzn, we have 
by the same argument as in Theorem 2.4 (the total nonlinearity of a com- 
position is determined by the length of the image): 

[ln[fq'(x) ] - ln[fq'(y)  ][ 
q--1 

~< ]lnf ' [~ Z 7 -~' [ f q - l ( x ) - f q - l ( Y ) l ~  

q--1 

[lnf ' lB ~ 7 ' i lJnl '  

Recall that the length of the interval 3.  tends to zero (exponentially fast) 
as n goes to infinity. This shows that for n large, R(f, J . )  is approxi- 
mately linear with slopes fq2n'(Q2n ) and fq2,+l'(Qzn+1 ). Now apply the 
corollary | 

Now consider the "linear" map L(e) in our class of maps defined as 
follows. L(e) is defined on two intervals in the unit interval I;  it is linear 
on these intervals and the derivative is the same on these intervals, namely 
exp[-2(e)]; the point 0 and 1 are fixed. Now consider the subsequent renor- 
malizations R(L(e), J'n), where J'n are the corresponding intervals. Denote 
by H ,  the topological conjugacy between the nonwandering sets of R(f,  Jn) 
and R(L(e), J'n). For  the terminology in the next theorem we refer to the 
Appendix. 

Proposi t ion  2.7: 

1. The H61der constant of H ,  tends to 1 faster than 1 - 7 q2n. 

2. The Lipschitz distance between Jh +1 in ,I N and J'n +l in 3'~ goes to 
zero faster than 7 q2,. 

ProoL This follows readily from the analysis as set up so far. ] 
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T h e o r e m 2 . 8 .  The sequence of renormalizations {R(f, Jn)}~ 
converges to the sequence of renormalizations {R(L(~), Jn)}~ as n tends 
to infinity. 

Remork. In principle, the speed of convergence can be estimated bet- 
ter. However, since the numerators in the continued fraction approximants 
to e already grow very fast, the difference will be hard to observe numeri- 
cally. One notices, though, that even in the hyperbolic setting there is, as 
far as speed of convergence is concerned, still a noticeable difference 
between irrational numbers of bounded type and, say, Liouville numbers. 
For the latter the convergence is extremely fast. 

This theorem implies that when one renormalizes at a gap point of the 
well-ordered Cantor set E~, the geometry of E~ at this point is completely 
controlled by the Lyapunov exponent of this set. This asymptotic geometry 
is independent of the particular choice of gap point. The convergence is, 
however, not uniform. (15) 

3. T H E  T W O - D I M E N S I O N A L  CASE 

In this section we will partially generalize the previous results to a 
class of two-dimensional hyperbolic sets, for which one can define a notion 
of well-orderedness. For a given well-ordered minimal set E~, we will define 
a renormalization procedure analogous to the one-dimensional case. The 
renormalized maps will be defined on certain "rectangles" bounded by the 
local stable and unstable manifolds of two periodic points (~5) (both of 
which are vertices of this "rectangle"). The sequence of rectangles deter- 
mined by subsequent renormalizations is canonically determined by the 
"number theory" of :~. The main result of this section is Theorem 3.12. It 
implies that the geometry of this sequence of rectangles (up to a global 
affine transformation) is determined exponentially fast by the "number 
theory" of ~ and the Lyapunov exponents of E~. In particular, as far as this 
sequence of rectangles is concerned, its geometry is asymptotically converg- 
ing to the geometry of the corresponding sequence of renormalizations in 
the case where the hyperbolic set is linear. Moreover, this theorem implies 
that subsequent renormalizations converge to the corresponding sequence 
of renormalizations one obtains in the linear case. That is to say: the 
H61der exponent of corresponding conjugacies tends to 1 extremely fast. 

Remark. Many of the results obtained in this section hold in a more 
general context. The way in which particular use has been made of the 
assumption that this renormalization process is concerned with well- 
ordered minimal sets is in the following. First of all, we have a version of 
(hyperbolic) Denjoy-Koksma for our setting. This basically amounts to 
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saying that we know the invariant probability measure #~ well enough to 
make a fairly precise statement concerning the existence and convergence 
of time averages. Moreover, in one part of the construction (Proposi- 
tion 3.10) we use the projection maps obtained by pushing along the 
invariant foliations. Such foliations are typically not much better than C 1, 
and neither are such projections. In order to maintain bounds on the non- 
linearity, it is therefore important not to have to use such projections very 
often. 

We will now define a class of hyperbolic sets we want to consider. 
Consider rectangles Ii, i t  {0, 1}, in the square I (see Fig. 2). Assume we 
are given maps f i :  Ii-~ f~( I i )c  I as indicated: both maps have a fixed point, 
both are orientation-preserving diffeomorphisms (C2), and f0 maps the 
interval I0 all the way across I along the bottom, and f l  maps the rectangle 
11 all the way across I along the top. We moreover assume that these maps 
are C 2 and uniformly hyperbolic: there exist smooth cone fields C" and C a 
on I which are strictly mapped into themselves by Df, resp. Df-l: For 
x E 1o LJ I1, Dfx strictly maps C"(x) into C"(f(x)), for x in f(Io u 11), Dfx t 
maps CS(x) strictly into C~(f ~(x)). Here strictly means in terms of a fixed 
norm [. I on tangent vectors: if v ~ C"(x), then [Dfxv{ ~> 7 Iv{ for some 7 > 1. 

From these assumptions one obtains that the nonwandering set A(f)  
is a hyperbolic Cantor set. In this setting one has on A(f)  stable and 
unstable bundles E s and E" and one has local stable and unstable 
manifolds tangent to these distributions. Since we are in the two-dimen- 

(1,1) 

(Y,~) 

Fig. 2. The geometric definition of the maps fo and f l .  
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sional case, these bundles are C1. (6) Moreover, under the present geometric 
assumptions we have that these bundles have f-invariant orientations. 

In the present setting one can once again define well-orderedness. Let 
V be a curve, say a stable manifold transverse to the unstable foliation, 
intersecting each leaf once. Denote by 7z" the projection of A( f )  on V along 
the unstable foliation (Tr" denotes the analogous projection along the stable 
direction). We say that a subset E of A( f )  is well ordered if the induced 
dynamics on the image of E under ~r" imbeds in a monotone circle map. 
Using symbolic dynamics, it is again easy to trace well-ordered minimal 
sets of given rotation number. One can adopt the strategy of Section 1: fix 
a rotation number c~ and now one defines functions s~, resp. s . . . .  from S 1 
to {0, 1} z (note the difference from dimension 1). All of the results of 
Section 1 carry over without any difficulty. 

Proposition 3.1. For  all c~ r 0 the nonwandering set A( f )  contains 
a unique minimal well-ordered set E~ of rotation number c~. 

We similarly have the analog of hyperbolic Denjoy-Koksma: 

Proposition 3.2. (Hyperbolic Denjoy-Koksma.)  Let c~ be irra- 
tional, and p/q a rational approximant of c~. Assume ~b is in C~A(f). Let 
x o be a point in E~; then 

; q 
i = 0  

the time average converges (not just #~ almost In particular, 
everywhere). 

ProoL We again want to find sets of small diameter and of #~ 
measure 1/q. In order to obtain sets of small diameter, we have to take into 
account forward and backward iterates. The construction of such sets is as 
follows. Let Q be a point in Ep/q (here we assume that q is even; the odd 
case is treated similarly). Consider the set of points in A( f )  whose symbol 
sequences agree for i =  -q /2  to i =  +q/2 with the symbol sequence for Q. 
Then the diameter of this set is bounded by v-q/2. Moreover, by the analog 
of Lemma 1.3, we obtain that the #~ measure of this set is 1/q. Now we can 
repeat the proof of Proposition 2.1. II 

Remark. Proposition 2.2 carries over without any difficulty (replace 
7 by 71/2). 

Denote by U, S the partial unstable, respectively stable, foliation on 
I o u I1, defined as W"(A(f))  ~ I o u I1, respectively W~(A(f)) n Io u I1. We 
use the word "partial" since they are only defined on a subset. Denote also 
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by f IU, respectively f S ,  the images of these foliations in I under f - l ,  
respectively f. Denote by fu, respectively f , ,  the induced C 2 maps on the 
leaves, fu = f :  f 1U ~ U and f ,  = f - l :  f S  --* S, considered as one-dimen- 
sional maps. Parametrize all the leaves in each of the partial foliations by 
arc length. 

Now let E~ be a well-ordered minimal set. Denote by 2u(c~), resp. 2s(c0, 
its unstable, resp. stable, Lyapunov exponent. Then )~u(e)=S ln f'u#~ and 
)~s(c0 = -Slnf's#~. Using Proposition3.2 and the analog of Proposi- 
tion 2.2, we have that for p/q a rational approximant [2u(c~)-2u(p/q)l and 
12~(c~)- 2s(p/q)l are exponentially small in q. 

We want to define the nonlinearity of f , ,  resp. f , .  Define the non- 
linearity of f ,  as the supremum over all connected leaves in f - I U  of the 
one-dimensional nonlinearity per leaf. Analogously for f , .  

Proposition 3.3. fu and f~ have bounded nonlinearity. 

Proof. This follows from the fact that the curvature of the local 
leaves is bounded. | 

As in the one-dimensional case, it is important to be able to control 
the nonlinearity after many iterates of f. Let U1 and U2 be partial 
foliations both contained in U. Assume that f~ :  U1--*U2 is well defined, 
i.e., fq  maps leaves in the first partial foliation into leaves of the second 
partial foliation and both foliations are local. Define $1 and $2 analogously. 

Proposition 3.4. The nonlinearity of fq  (fq) is bounded by a 
constant times the diameter of U2 ($2). 

Proof. Here the diameter of a one-dimensional foliation is by defini- 
tion the length of its longest leaf. 

It is sufficient to prove the result for f , .  Now, f ,  is leafwise C 2 and we 
can repeat the first part of the proof of Proposition 2.6. | 

We finally need to discuss projection (holonomy) maps obtained by 
pushing along stable or unstable foliations (see Fig. 3). Let L be a leaf of 
U. Let V~ and V2 be smooth curves intersecting L transversely. Near 
V~ n L one can consider the projection from V~ c~ U to V2 c~ U defined by 
pushing along the leaves of U. Since the partial foliation U is C ~, this 
holonomy map is C z. In particular, if V1 and V2 are C ~-close, this map will 
have derivative close to one (again the size of the derivative is measured in 
terms of arc-length coordinates). The same discussion holds for pushing 
along the stable foliation. Such projections, which are initially only defined 
on a Cantor set, have C ~ extensions of derivative close to the derivative on 
the Cantor set. 

In this setting we can define a return map to a rectangle as 
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V 1 

\ v 
Holonomy , f  2 

U 

L 

Fig. 3. The holonomy map: pushing along unstable leafs. 

follows. From now on, we will again concentrate on continued 
fraction approximants Pn/qn to CC We will renormalize on the points 
Q2n=eefSp2n/q2,(O) and Q2~+1 = d e f S p 2 n + l / q 2 n + l ( O )  �9 Define the rectangle Jn as 
the diamond-shaped region whose boundaries are the local stable and 
unstable manifolds of these two points (note that Q2n is the vertex at the 
lower left and Q2n+x is at the upper right). 

In this rectangle we define two strips J.,0 and J . , l :  
Jn, o = a e f f - q 2 " ( J . ) ~ J ,  and Jn, l = d e f f  q2"+l(Jn)~J n. Now define R(f, J . )  
as the rescaled version of fq2, on J.,0 and fq2o+l on J.,1. The R(f  J . )  
satisfies the assumptions of the map at the beginning of this section (see 
also Fig. 4). We call R(f, J . )  the renormalization of f on J . :  it can be con- 
sidered as the return map to J . .  In particular, R(f  J . )  will have well- 
ordered minimal sets. We remark that for general p/q < r/s, such rectangles 
and renormalizations can be defined analogously. 

Concerning the shape of J ,  we want to make a few remarks. One 
observes that the symbol sequences for Q2, and Q2,+~ agree for 
i=-q2n+ 1 to i=qz,_j-1.  This implies that J ,  is a small and very 
skinny paralMlogram, with angles determined by the intersection of local 
stable and unstable manifolds at the chosen point in E~. The strips J,,,o and 
J,.~ are extremely skinny compared to J~. 

Now consider the "linear" map L(~) in our class of maps defined as 
follows. L(~) is defined on two strips in the unit square I; it is linear on 
these strips and the derivative diagonal and the same on both of these 
strips: namely exp[2~(~)] in the horizontal direction and exp[2,(~)] in the 
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Q2n+1 

[~2n 

Fig. 4. 

R(r n) 

The geometric definitions of the nth renormalization R( f , J . ) .  

vertical direction. The points (0, 0) and (1, 1) are fixed. Now consider the 
subsequent renormalizations R(L(c~), J'n), where ,l'n are the corresponding 
rectangles. Denote by Hn the topological conjugacy between the non- 
wandering sets of R(f,  3,)  and R(L(e), J',). 

We first study the following one-dimensional problem (see Fig. 5). 
Consider the map h,, the restriction of H~ to Snc~ WlUoc(Qzn), the 

"bottom" of dn. The map h, conjugates ( fu)q2,  o n  I o to  its linear equivalent 
on I;  and ~ o  ( fu)q2"+lo lr s -  1 on the right interval 11 to its linear equivalent 
on I~. Here ~" denotes the projection along the stable leafs in from "top" 
to "bottom" in J , .  

Lemma 3.5. The conjugacy hn is H61der and its H61der exponent is 
at least 1 -  0(7 -q2") as n tends to infinity. 

Proof. Since the rectangle J .  is exponentially small in n, we have that 
ns has derivative very close to one. 

Now h n conjugates two one-dimensional maps of the type discussed in 
Section 2. Combining this with Proposition 3.4, we conclude that each of 
these one-dimensional maps has exponentially .small nonlinearity. By the 
analog to Corollary 2.3, we have that the derivatives on corresponding 
intervals are exponentially close. Therefore, ratios of derivatives are very 
close to one (see the remark in the beginning of Section 2). | 
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<_ f u q2n'+ 1 

I 

I s 
3 n ~ Hol 

] I 1 

f : 2 4 -  - - - >  

10 -- I 1 

I ", ~ F 

I 

Fig. 5. Reduction to one-dimensional expanding maps. 

Corollary 3.6. The H61der constant of the conjugacy between 
R(f  J , )  and R(L(cO, J',) is at least 1 - 0(7 q2o) as n tends to infinity. 

Proof. To obtain Hn, push points along stable and unstable leaves 
and use the differentiability of the projection 7: s. | 

Proposition 3.7. The Lipschitz distance between J~+~ in J .  and 
J'n+l in J'n goes to zero faster than 7 -q2". 

Proof. Consider the rectangle Jn. In order to construct J , + l  it 
suffices to determine the leaves in U and S bounding it. See Fig. 6. Each of 
these leaves corresponds, as in the proof of Lemma 3.5, to fixed points of 
one-dimensional maps of bounded nonlinearity, l 

We now reformulate the previous propositions in our theorem. 

Theorem 3.8. The sequence of renormalizations {R(f, Jn)}~ con- 
verges to the sequence of renormalizations {R(L(c0, J'n)}~ as n tends to 
infinity. 
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. J r q  

Fig. 6. The location of the n + 1st domain in the nth domain. 

Remark. As long as ~ is irrational, the sequence of renormalizations 
{R(f, J , )}  is well defined. The speed of the convergence is slowest, but still 
superexponentially convergent in n, for rotation numbers of bounded type. 

A P P E N D I X .  C O N V E R G E N C E  OF R E N O R M A L I Z A T I O N  

In this Appendix we present a definition of convergence of 
renormalizations appropriate for our context. 

Each map f in the class of maps we consider in Sections 2 and 3 
defines a sequence of renormalizations {R(f , J . )}~.  The domains J .  of 
definition for the renormalized maps depend on the initial choice of map 
and form a decreasing sequence of sets J .  + ~ c J . .  

In the one-dimensional case each of these intervals is bounded by two 
specific periodic points. In the two-dimensional setting (Section 3) each of 
these domains is a "rectangle" bounded by local unstable and stable 
manifolds of two specific periodic points (both of which are vertices of the 
rectangle). Moreover, the next domain Jn+l  is in a very specific region of 
this "rectangle." To each of these rectangles Jn, we can associate an affine 
transformation A j .  This transformation Aais determined by the following 
requirements: orientation preserving, the vertex Q2n goes to (0, 0), and the 
two adjacent points go to (1, 0) and (0, 1). The image of Jn under Aj, 
converges exponentially fast in n to the unit square L In the one-dimen- 
sional case this transformation Aj. is determined by requiring it to be 
orientation preserving. 
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co R ' Consider for f and f '  the sequences {R(f, J.)}o and { ( f ,  J ' . )}~ .  
In this setting we have the following: for each n, R(f, J~) and R(f, J'n) 

are, by assumption, topologically conjugate on their nonwandering set, 
by a transformation Hn. We have, moreover, that with respect to the 
Euclidean metric each H, is H61der continuous on the corresponding non- 
wandering set. 

D e f i n i t i o n  (Convergence of renormalization). The sequence 
{R(f, J . ) } ~  converges to the sequence {R(g, J ' . )}~ if: 

1. The H61der exponent of the conjugacy H,  converges to one as n 
tends to infinity, 

2. The Lipschitz distance between J ,  + ~ in J~ and J', + 1 in J'n tends to 
zero as n tends to infinity. 

The definition of (relative) Lipschitz distance (3~ we use is the following. 

De f in i t i on .  Let M be a metric space with boundary 0(M), and A 
and B two homeomorphic subsets of M. Define the Lipschitz distance 
between A and B in M as 

inf{ln L(~o) + In L(~o ~)1 

(p: (M, A) ~ (M, B) is a homeomorphism, (p = id on O(M)} 

Here L(~o) denotes the infimum of the Lipschitz constants for ~o. (If 
A and B are not Lipschitz homeomorphic, one defines their Lipschitz 
distance as +c~.) 

Now define the Lipschitz distance between Jn +1 in Jn and J~ +1 in J~ 
A ' as the Lipschitz distance between Ajo(J.+~) and j;(d,+~) in the unit 

square I. (Note that the image of dn itself under Aj, converges exponen- 
tially fast in n to the unit square I.) 

The point of this definition is that the sets dn+~, respectively d;,+5 
have very small diameter with respect to d, ,  d'n. Moreover, J , + l  is also 
extremely close to the boundary of Jn. If the Lipschitz distance between 
Jn +1 in dn and d'n +1 in J'~ is small, then in particular their locations in the 
respective bigger rectangles are comparable. 

Remark. Part two of the definition of convergence of renormalization 
is a condition quite independent of part one. Although each conjugacy H n 
is H61der continuous of exponent close to one, this does not imply that the 
Lipschitz distance between dn +~ in J~ and J'~ ~1 in d'. is small. 

822/59/1~2-2l 
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4. C O N C L U D I N G  R E M A R K S  

In this paper we consider two examples of renormalization at points 
in well-ordered sets in certain hyperbolic maps. The main ingredient, 
besides hyperbolicity, is the hyperbolic Denjoy-Koksma theorem. The 
central reasons why we have such a theorem are that the invariant 
probability measure of a well-ordered set is concentrated on exponentially 
small intervals and the symbolic dynamics is very regular. It therefore 
seems reasonable to expect that a similar program can be carried out in 
different contexts. As an example, we mention the period doubling Cantor 
set in unimodal maps of positive entropy. This set is hyperbolic and has 
a fairly simple symbolic dynamics. 

The fundamental problems in proving higher-dimensional generaliza- 
tions (say, four-dimensional symplectic maps) are a lack in our under- 
standing of the analogues of well-ordered behavior and the lack of smooth- 
ness of foliations. 

Finally, we want to put the results of the renormalization approach 
described here in the context of renormalization of circle maps and twist 
maps. There one has with regard to renormalization of dynamics on well- 
ordered sets the following crude geometric picture in the space of such 
maps (unproven). There is a basin of attraction consisting of maps whose 
dynamics on a (given) well-ordered set is smoothly conjugate to a rigid 
rotation. Successive renormalizations of such a map converge to a set of 
maps whose dynamics is a rigid rotation on the corresponding well-ordered 
sets. Then there is a "codimension one" invariant set consisting of well- 
ordered sets on which the map is smoothly conjugate to a "critical" circle 
map. This critical set is normally repelling for the renormalization 
operator and forms the boundary of the basin of attraction described 
before. Its other side consists of maps whose (given) well-ordered set is a 
hyperbolic Cantor set. This is the side discussed here and one has that 
successive renormalizations in this region go off to infinity (scaling go at a 
superexponential rate to zero). 

In this set our results show that for two maps with hyperbolic well- 
ordered sets of the same rotation number and the same Lyapunov 
exponent, successive renormalizations of the one converge to successive 
renormalizations of the other. [-In the case where the rotation number is 
the golden mean and one can speak of fixed points of renormalization our 
results amount to studying the unstable manifold of the "critical" map in 
the neighborhood of infinity (R. MacKay, private communication).] The 
novel feature in this case is that renormalizations of two maps with well- 
ordered sets of the same rotation number, but different Lyapunov 
exponents, diverge. This second parameter (Lyapunov exponent) does not 
seem to have an analog in the other cases. 
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